

DOI: 10.12086/oee.2022.220135

金纳米锥阵列与金薄膜耦合结构 表面等离子体折射率传感研究

王向贤^{1*},陈函文¹,朱剑凯¹,祁云平², 张丽萍¹,杨 华¹,余建立³ ¹兰州理工大学理学院,甘肃兰州 730050; ²西北师范大学物理与电子工程学院,甘肃兰州 730070;

3巢湖学院电子工程学院,安徽合肥 238024

摘要:设计了基于 SiO₂ 薄膜间隔的金纳米维与金薄膜耦合结构表面等离子体共振折射率传感器。使用时域有限差分 法研究了复合结构中的表面等离子体共振模式,复合结构不仅能够激发局域表面等离子体共振,也可激发传播表面等 离子体共振。入射电磁波的能量部分通过单个金纳米锥耦合到局域表面等离子体,部分通过金纳米锥阵列二维光栅耦 合到传播表面等离子体。在待测物折射率 1.30~1.40 的范围内,对复合结构的反射光谱进行了模拟研究,发现共振波 长与分析物折射率呈线性关系,且由于局域和传播表面等离子体的高效激发,反射光谱共振峰处的反射率几乎为零。 此外,在最优的金纳米锥几何参数下,传播表面等离子体共振模式的半高全宽非常窄,灵敏度和品质因数分别达到 770 nm/RIU 和 113 RIU⁻¹,具有良好的折射率传感性能。所设计的复合结构作为表面等离子体共振传感器有望广泛应 用于生物检测领域。

关键词:金纳米锥;金薄膜;表面等离子体;折射率传感 中图分类号:O436.1

王向贤,陈函文,朱剑凯,等.金纳米锥阵列与金薄膜耦合结构表面等离子体折射率传感研究 [J].光电工程,2022,49(12): 220135

文献标志码: A

Wang X X, Chen H W, Zhu J K, et al. Research on surface plasmon refractive index sensing of gold nano cone array and gold film coupling structure[J]. Opto-Electron Eng, 2022, **49**(12): 220135

Research on surface plasmon refractive index sensing of gold nano cone array and gold film coupling structure

Wang Xiangxian^{1*}, Chen Hanwen¹, Zhu Jiankai¹, Qi Yunping², Zhang Liping¹, Yang Hua¹, Yu Jianli³

¹College of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, China;

² College of Physics and Eectronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China;

³ School of Electronic Engineering, Chaohu University, Hefei, Anhui 238024, China

Abstract: A surface plasmon resonance refractive index sensor based on the coupling structure of gold nano cones and a gold film with a SiO_2 film as spacer-layer is designed. The surface plasmon resonance modes in the

收稿日期: 2022-06-20; 收到修改稿日期: 2022-09-26

基金项目: 国家自然科学基金资助项目 (61865008, 62165013); 兰州理工大学红柳一级学科发展规划 *通信作者: 王向贤, wangxx869@lut.edu.cn。

版权所有©2022 中国科学院光电技术研究所

王向贤,等.光电工程,2022,49(12):220135

composite structure are studied by using the Finite Difference Time Domain method. The composite structure can stimulate not only localized surface plasmon, but also propagating surface plasmon. The energy of the incident electromagnetic wave is partially coupled to the localized surface plasmon through a single gold nano cone, and partially coupled to the propagating surface plasmon through a grating of gold nano cone array. The reflection spectra of the composite structure are simulated in the refractive index range of 1.30 to 1.40. It is found that the resonance wavelength has a linear relationship with the refractive index of the analyte, and the reflectivity at the resonance is almost zero due to the strong resonance coupling between localized and propagating surface plasmon. In addition, the full width at half maximum of propagating surface plasmon resonance mode is very narrow when the geometric parameters of gold nano cone are optimized. The sensitivity and figure of merit reach 770 nm/RIU and 113 RIU⁻¹ respectively, and it has good refractive index sensing performance. The designed composite structure is expected to be widely used in the field of biochemical detection.

Keywords: gold nano cone; gold film; surface plasmon; refractive index sensing

1 引 言

在一定条件下,金属表面的自由电子经过入射光 照射,入射光波中的光子与金属表面的自由电子相互 作用产生的电磁振荡被称之为传播表面等离子体^[1-2] (propagating surface plasmons, PSPs)。而当入射光作用 于金属纳米颗粒上时,所产生的电磁振荡称为局域表 面等离子体^[3-4](localized surface plasmons, LSPs)。在金 属纳米颗粒和金属薄膜复合结构中,由于传播表面等 离子体和局域表面等离子体的高效激发,使得微纳结 构热点处的电磁场得到很大提高。这一特性也使得它 在光催化^[5-7]、纳米光刻^[8-9]、生物传感^[10-13]、超表面^[14]、 吸收器^[15-17]以及表面增强拉曼散射^[18-19]等领域得以广 泛应用。

近几年,研究人员制备了不同形状、尺寸的纳米 颗粒以及纳米颗粒与金属薄膜复合结构,使得这些微 纳结构在应用方面的研究得到了广泛的关注。Qiang Fu^[20]等人通过银纳米立方体和银金属光栅的复合结 构,实现了传播表面等离子体与局域表面等离子体的 相互耦合。Chu^[21]等人研究了二维周期性金纳米盘阵 列、二氧化硅间隔层和金薄膜组成的复合结构,通过 改变金纳米盘的尺寸和阵列周期,发现共振条件下复 合结构中单个金纳米盘的电场增强高达 5000,远高 于玻璃基片上单个金纳米盘的电场增强。此外, Kohandani^[22]等人通过在周期性二维纳米光栅 (金纳米颗粒阵列)下方引入薄金层,实现了 429 nm/RIU 的灵敏度。Abutoama^[23]等人通过在薄金属膜上添加 薄介质 (Si₃N₄) 光栅,在金属膜的两个边界处产生了 两种表面等离子体,其中一种等离子体对分析物折射 率敏感,其灵敏度达到 580 nm/RIU。迄今,各种基 于亚波长金属颗粒的表面等离子体折射率传感器已在 实验或理论研究上均获得成功,如纳米球^[24-26]、纳米 线^[27-31]及相互作用的颗粒集团等。随着微纳光刻技术 的不断发展,通过颗粒阵列及薄膜结构耦合的方式来 激发表面等离子体从而进一步提升折射率传感器的灵 敏度、集成度及便携性仍然具有重要意义并表现出可 观的应用潜力。

本文设计了金纳米锥与金薄膜耦合结构,并具体 探究其所激发的表面等离子体效应,利用时域有限差 分法对结构进行数值模拟研究,探究了结构的几何参 数对折射率传感的影响。在光栅周期为 800 nm,金 纳米锥底面半径为 140 nm,高度为 200 nm 时,耦合 结构的折射率灵敏度可达 770 nm/RIU。在 900 nm~ 2000 nm 的波长范围内,结构可以实现折射率范围 1.30~1.40 的传感,且可以通过改变结构周期或金纳 米锥的几何参数来调谐共振波长。相比类似的折射率 传感器件,所设计的结构在生物传感和检测方面具有 较大的应用潜力。

2 理论分析

图 1(a) 是所设计的金纳米锥与金纳米薄膜耦合结构的三维示意图。复合结构以玻璃为基底,自下而上分别为金纳米薄膜、SiO₂纳米薄膜间隔层、金纳米锥二维阵列。金纳米锥以正方形阵列规则排列,整个阵列沿*x*方向和*y*方向周期性延展,结构由一个*x*方向偏振、*z*轴负方向传播的平面波激发其表面等离激元。其中,金纳米薄膜的厚度为 120 nm, SiO₂纳米薄膜间隔层厚度为 20 nm。设金纳米锥的底面半径为*R*,

王向贤, 等. 光电工程, 2022, 49(12): 220135

https://doi.org/10.12086/oee.2022.220135

高度为*H*,且允许金纳米锥的尺寸在一定范围内变化。 SiO₂薄膜使金纳米锥阵列和金纳米薄膜分离,以此激 发结构的局域和传播表面等离子体共振。在分析研究 中,使用时域有限差分法 (finite difference time domain, FDTD)来计算结构的反射光谱和场强分布。 由于复合结构是周期性的,我们只选择如图 1(b)中一 个金纳米锥与金薄膜耦合微元作为研究对象,并使用 周期性边界条件探究其表面等离子体效应及折射率传 感特性。

该结构具有同时激发传播和局域表面等离子体共振的条件,入射电磁波能量通过单个金纳米锥可以激发局域表面等离子体共振,而金纳米锥组成的二维点阵可以激发传播表面等离子体共振。金纳米锥阵列作为一个二维点阵光栅提供额外的动量,从而将入射波能量耦合到传播表面等离激元中。补偿的额外动量^[21,32]:

$$G = \frac{2\pi}{D} \sqrt{n^2 + m^2},\tag{1}$$

其中: n 和 m 是衍射阶数,为整数,D 为光栅常数 (即阵列周期)。(n, m) = (1, 0) 和 (1, 1) 代表低阶共振 波长下的两种模式,而随着 (n, m) 的增大,共振频率 会越来越高。

其次,当 TM 极化波垂直入射时,二维光栅激发的表面等离子体共振波长可表示为^[3-34]

$$\lambda_{\rm res} = \frac{P}{\sqrt{n^2 + m^2}} \frac{\sqrt{{\rm Re}(\varepsilon_{\rm metal}) \cdot n^2_{\rm analyte}}}{\sqrt{{\rm Re}(\varepsilon_{\rm metal}) + n^2_{\rm analyte}}},$$
(2)

其中: n 和 m 为衍射阶数, P 为二维光栅的周期, n_{analyte} 为分析物折射率, ϵ_{metal} 为金属的复介电常数。 光栅激发的表面等离子体共振波长与光栅周期有关, 随着周期的增加, 共振波长将发生红移。 当复合结构产生表面等离子体共振时,表面等离 子体波对周围环境介质的变化十分敏感,故而共振波 长的移动对应待测物的折射率变化。通过建立起待测 物折射率与共振波长的曲线对应关系,即可达到折射 率传感的目的。

传感器灵敏度 (sensitivity, *S*) 和品质因数 (figure of merit, *FOM*) 是描述传感器性能表现的两个物理参量,这两个参数值越高,则代表传感器性能越好。折射率灵敏度的定义为^[33]

$$S = \frac{\Delta \lambda}{\Delta n},\tag{3}$$

其中: Δn 为折射率 (refractive index units, RIU) 变化 量, $\Delta \lambda$ 为 Δn 对应的共振波长偏离量。品质因数的定 义为^[34]

$$FOM = \frac{S}{FWHM},\tag{4}$$

其中: FWHM 指的是用于折射率传感的共振峰的半高全宽 (full width at half maximum, FWHM)。

3 研究结果与讨论

图 2 是用 FDTD 模拟计算的复合结构在 900 nm~2000 nm 波长范围内扫描得到的反射光谱。对应的几何结构参数:金纳米锥的底面半径 (R)为140 nm,高度 (H)为200 nm,阵列周期 (D)为800 nm,背景折射率 (待测物折射率)为1.30。复合结构的反射光谱主要表现出两种表面等离子体共振模式,两种共振模式分别位于波长1052 nm (模式1)和1553 nm (模式2)处。由此可以说明,金纳米锥与金薄膜耦合结构可以有效地激发传播和局域表面等离子体共振,两种模式相互耦合使得共振强度都较大。对比两种共振模式可见,反射光谱中模式1的半高全宽较窄,而模式2

图 2 金纳米维与金薄膜复合结构的反射光谱。金纳米维底面半径为 140 nm, 高为 200 nm,周期为 800 nm,背景折射率为 1.30

Fig. 2 Reflection spectra of composite structure of gold nano cone and gold film. The bottom radius, the height and the period of the gold nano cone are 140 nm, 200 nm, 800 nm, and the background refractive index is 1.30

的半高全宽相对来说要宽很多。这是由于它们之间不 同的激发特点,传播表面等离子体共振是由光栅衍射 引起的,需严格满足光栅衍射条件和动量匹配条件, 故而共振波长频域较小对应其半高全宽较窄;局域表 面等离子体共振是当入射电磁波与金属纳米颗粒内部 自由电子的本征振荡频率一致时,金属内部的自由电 子发生集体振荡的行为,主要受金属纳米颗粒的几何 形状、尺寸、金属薄膜厚度等因素影响,因其无需满 足光栅衍射条件即可激发,故而共振波长频域较大对 应其半高全宽较宽。

复合结构中两种共振模式下的电场分布如图 3 所示, 3(a) 和 3(d) 为复合结构在 *x-z* 平面上两种模式的电场分布, 3(b) 和 3(e) 为 SiO₂ 间隔层下表面和金薄 膜界面上两种模式的电场分布, 3(c) 和 3(f) 为分析物

图 3 复合结构中两种模式共振波长下的电场分布图。金纳米锥底面半径为 140 nm,高度为 200 nm,周期为 800 nm, 背景折射率为 1.30. (a) 和 (d) 为 x-z 平面上的电场分布, (b) 和 (e) 为 SiO₂ 间隔层下表面和 Au 薄膜界面上的电场分布, (c) 和 (f) 为分析物与 SiO₂ 间隔层上表面上的电场分布; (a)、(b)、(c) 为模式 1,(d)、(e)、(f) 为模式 2

Fig. 3 Electric field distributions of the composite structure at two modes resonance wavelengths. The bottom radius, the height and the period of gold nano cone are 140 nm, 200 nm and 800 nm. The background refractive index is 1.30. (a) and (d) are the electric field distribution on the *x*-*z* plane; (b) and (e) are the electric field distribution on the lower surface of the SiO₂ spacer and the interface of the Au film; (c) and (f) are the electric field distribution on the surface above the analyte and the SiO₂ spacer; (a), (b) and (c) are mode 1, (d), (e) and (f) are mode 2

与 SiO, 间隔层上表面上两种模式的电场分布; 3(a)、 3(b)、3(c)为模式1,3(d)、3(e)、3(f)为模式2。从 图 3(a) 和 3(b) 可以看出, 电场增强主要分布于待测 物环境中和金薄膜的表面,这是入射电磁波在金薄膜 上表面耦合形成传播表面等离子体共振的结果。从 图 3(e) 和 3(f) 可以看出, 电场强度分布主要局域于金 纳米锥与 SiO, 间隔层的界面处和 SiO, 间隔层与金薄 膜的界面处,而这是因为入射电磁波通过金纳米锥阵 列耦合形成局域表面等离子体共振。需要注意的是, 两种模式是由复合结构引起的传播和局域表面等离子 体共振耦合的结果, 金纳米锥颗粒周围激发的 LSPs 与金薄膜上的 PSPs 相互作用,从而导致 SiO₂ 间隔层 上表面的电场分布不同。它们的区别在于两种表面等 离激元的贡献不同。模式1中占优势的为传播表面等 离子体共振,而模式2中局域表面等离子体共振更占 优势。

下面进一步研究在不同参数下金纳米锥复合结构 的反射光谱,分析结构参数对共振模式的影响。 图 4(a) 为金纳米锥在不同高度 (H) 下的反射光谱, 固 定待测物背景折射率为 1.30, 光栅周期为 800 nm, 金纳米锥的底面半径为140 nm,将金纳米锥的高度 以 10 nm 为步长从 200 nm 变化到 240 nm。从反射光 谱可以看出,模式1的共振波长随金纳米锥高度的增 大几乎没有变化, 而模式2的共振波长表现出向长波 长方向的移动。这说明模式1主要是由传播表面等离 子体共振引起的, 而模式2主要是由局域表面等离子 体共振引起的。图 4(b) 为金纳米锥在不同底面半径 (R)下的反射光谱,待测物背景折射率依然为1.30,光 栅周期为800 nm, 金纳米锥的高度为200 nm, 将金 纳米锥底面半径以 20 nm 为步长从 100 nm 变化到 180 nm。从图中可以看到,模式1的共振波长随尺寸 的增大也几乎没有变化,而模式2的共振波长随着尺

图 4 背景折射率 1.30,不同参数下复合结构的反射光谱。(a) D 为 800 nm, R 为 140 nm, H 从 200 nm~240 nm; (b) D 为 800 nm, H 为 200 nm, R 从 100 nm~180 nm; (c) H 为 200 nm, R 为 140 nm, D 从 700 nm~900 nm; (d) 不同周期下模式 1 共振波长的仿真值与理论值

Fig. 4 The background refractive index is 1.30, the reflection spectra of the composite structure under different parameters. (a) *D* 800 nm, *R* 140 nm, and *H* changes from 200 nm to 240 nm; (b) *D* 800 nm, *H* 200 nm, and *R* changes from 100 nm to 180 nm; (c) *H* 200 nm, *R* 140 nm, and *D* changes from 700 nm to 900 nm; (d) Simulation and theoretical values of mode 1 resonance wavelength at various period

寸的变化逐渐向长波长方向移动。再次说明模式1所 引起的共振是非局域的,模式2主要是由局域表面等 离子体共振引起的。此外,金纳米锥的耦合距离也会 对局域表面等离子体共振模式(模式2)有一定影响。 当复合结构的周期一定时,金纳米锥之间的耦合距离 可以通过金纳米锥底面半径(R)调控。从图4(b)也可 以看出,当金纳米锥底面半径(R)增大,即金纳米锥 之间的耦合距离减小时,模式2的共振波长会出现 红移。

图 4(c) 为复合结构在不同周期下的反射光谱,背 景折射率为 1.30, 金纳米锥底面半径为 140 nm,高 度为 200 nm,光栅周期以 50 nm 为步长从 700 nm 变 化到 900 nm。从反射光谱中可以看到模式 1 的共振 波长随周期的增加逐渐向长波长移动且反射率均保持 在 0.1 以下的较低范围内,模式 2 共振波长基本保持 不变但反射率谷值逐渐降低。这说明模式 1 是低阶的 二维光栅引起的传播表面等离子体共振,而模式 2 主 要是由局域表面等离子体共振引起的,表现为共振波 长与周期无关。从图 4(d) 可以看出,根据式 (2) 计算 得到的不同周期下模式 1 共振波长理论值与仿真值基 本吻合。

从金纳米锥复合结构在不同参数下的反射光谱可 以看出,模式1主要受光栅周期的影响,所引起的共 振主要是传播表面等离子体共振。而模式2受金纳米 锥几何参数的影响更大,主要是由局域表面等离子体 共振引起的。

最后,讨论模式1和模式2的传感特性,分析共 振模式对结构传感器灵敏度及品质因数的影响。图5 为以0.01为间隔,折射率从1.30变化到1.40时,不 同折射率下复合结构的反射光谱,金纳米锥的底面半径为 140 nm,高度为 200 nm,光栅周期为 800 nm (最优参数)。从反射光谱中可以看到,随着待测物折射率逐渐增大,两种模式的共振波长均发生红移,且反射率一直保持在 0.1 以下的较低范围。在不同待测物折射率下,同一模式所对应的共振峰半高全宽几乎不变,且模式 1 的半高全宽非常窄 (FWHM=7 nm),具有良好的折射率传感性能。

图 6 为不同待测物折射率下的反射光谱共振波长 与折射率变化的关系曲线, 金纳米锥的几何参数同上。 其中, 红色曲线为光栅激发的表面等离子体共振波长 的理论值与背景折射率的关系曲线,黑色、蓝色曲线 为复合结构两种共振模式下共振波长的数值模拟结果 与背景折射率的关系曲线,可以看出模式1仿真结果 与理论结果拟合良好。关系曲线的斜率即代表复合结 构的折射率灵敏度, 计算得到两种模式下折射率灵敏 度(S)分别为770 nm/RIU(模式1)和225 nm/RIU(模 式 2), 两种模式的品质因数 (figure of merit, FOM) 分别为 113 RIU¹(模式 1)和 1.9 RIU¹(模式 2)。相较 于 Abutoama 等人^[23] 和 Sharma^[35] 等人提出的介质光 栅与金薄膜耦合结构,本文的灵敏度均优于其所报道 的 580 nm/RIU 和 693.88 nm/RIU; 品质因数也高于其 他以往的研究报道[1,36]。除此之外,本文所设计的金 纳米锥与金薄膜耦合结构可同时激发传播和局域两种 表面等离子体共振模式作为传感通道,实现双通道不 同波段的折射率传感。

通过以上研究可知,无论是灵敏度还是品质因数, 模式2都要比模式1低很多且品质因数相差较大。模 式1之所以具有较高的灵敏度,是因为其主要是由传

图 5 不同分析物折射率下复合结构的反射光谱。金纳米锥的半径为 140 nm,高度为 200 nm,周期为 800 nm Fig. 5 Reflection spectrum of the composite structure under different refractive index of analyte. The radius of Au nano cone is 140 nm, the height is 200 nm, and the period is 800 nm

图 6 不同待测物折射率下复合结构反射光谱共振波长与折射率变化的关系曲线。 金纳米锥的底面半径为 140 nm,高度为 200 nm,周期为 800 nm

Fig. 6 Relationship curves of reflection spectrum resonance wavelength of the composite structure with refractive index change under different refractive index of object to be measured. The bottom radius of gold nano cone is 140 nm, the height is 200 nm, and the period is 800 nm

播表面等离子体共振引起的,而模式2主要是由局域 表面等离子体共振引起的。即模式1相较于模式2对 环境电介质折射率的改变要更敏感,因此模式1有更 高的折射率灵敏度。而品质因数的大小同时取决于灵 敏度和半高全宽,模式1的灵敏度不仅要比模式2大 很多,而且其半高全宽也小很多。

4 结 论

设计了基于 SiO₂ 间隔的金纳米锥阵列与金薄膜 耦合结构表面等离子体共振折射率传感器。从反射光 谱和电场分布两个角度进行了理论分析和数值模拟研 究,论证了复合结构可以有效激发表面等离子体共振。 在确定的几何参数下,复合结构在模式1中主要形成 传播表面等离子体共振,而在模式2中主要形成局域 表面等离子体共振。在金纳米锥底面半径为140 nm, 高度为200 nm,光栅周期为800 nm 时,复合结构在 共振峰处具有很低的反射率即具有很高的共振强度。 在上述最优参数下,模式1的折射率灵敏度和品质因 数分别为770 nm/RIU和113 RIU⁻¹,远高于模式2的 灵敏度和品质因数。本文所设计的折射率传感器有望 在生化检测领域得到应用。

参考文献

[1] Wang X X, Zhu J K, Tong H, et al. A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO₂ spacer[J]. *Chin Phys B*, 2019, **28**(4): 044201.

- [2] Liu C, Lü J W, Liu W, et al. Overview of refractive index sensors comprising photonic crystal fibers based on the surface Plasmon resonance effect [Invited][J]. *Chin Opt Lett*, 2021, **19**(10): 102202.
- [3] Liu C, Yang L, Liu Q, et al. Analysis of a surface Plasmon resonance probe based on photonic crystal fibers for low refractive index detection[J]. *Plasmonics*, 2018, **13**(3): 779–784.
- [4] Wang X X, Zhu J K, Xu Y Q, et al. A plasmonic refractive index sensor with double self-reference characteristic[J]. *Europhys Lett*, 2021, **135**(2): 27001.
- [5] Cheng T T, Gao H J, Liu G R, et al. Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi₄Ti₃O₁₂ hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions[J]. *Colloids Surf A-Physicochem Eng Asp*, 2022, **633**: 127918.
- [6] Guan S T, Li R S, Sun X F, et al. Construction of novel ternary Au/LaFeO₃/Cu₂O composite photocatalysts for RhB degradation via photo-Fenton catalysis[J]. *Mater Technol*, 2021, **36**(10): 603–615.
- [7] Gao H J, Zhao X X, Zhang H M, et al. Construction of 2D/0D/2D face-to-face contact g-C₃N₄@Au@Bi₄Ti₃O₁₂ heterojunction photocatalysts for degradation of rhodamine B[J]. J Electron Mater, 2020, 49(9): 5248–5259.
- [8] Jia T X, Wang X X, Ren Y Q, et al. Incidence angle effects on the fabrication of microstructures using six-beam laser interference lithography[J]. *Coatings*, 2021, **11**(1): 62.
- [9] Wang X X, Jia T X, Zhu J K, et al. Theoretical study of microstructure fabrication by multi-beam laser interference lithography with different polarization combinations[J]. *Mod Phys Lett B*, 2021, **35**(32): 2150459.
- [10] Wang X X, Zhang J, Zhu J K, et al. Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film[J]. *Chin Phys B*, 2021, **31**(2): 024210.
- [11] Chen J, Peng C, Qi S B, et al. Photonic microcavity-enhanced magnetic Plasmon resonance of metamaterials for sensing applications[J]. *IEEE Photonics Technol Lett*, 2019, **31**(2):

113-116.

- [12] Chen J, Nie H, Tang C J, et al. Highly sensitive refractiveindex sensor based on strong magnetic resonance in metamaterials[J]. *Appl Phys Express*, 2019, **12**(5): 052015.
- [13] Zhang W J, Zeng X L, Yang A, et al. Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J]. Opto-Electron Eng, 2021, 48(9): 200451. 张伟建, 曾祥龙, 杨傲, 等. 纳米金涂覆微纳光纤的倏逝场氨气检 测研究[J]. 光电工程, 2021, 48(9): 200451.
- [14] Zhang J Q, Wu Y P, Chen S H, et al. Optimized bow-tie metasurface and its application in trace detection of lead ion[J]. Opto-Electron Eng, 2021, 48(8): 210123. 张俊卿, 吴毅萍, 陈晟皓, 等. 改进型蝴蝶结超表面及在痕量铅离 子检测中的应用[J]. 光电工程, 2021, 48(8): 210123.
- [15] Zhou F Q, Qin F, Yi Z, et al. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface Plasmon resonance[J]. *Phys Chem Chem Phys*, 2021, 23(31): 17041–17048.
- [16] Yan Z D, Lu X, Du W, et al. Ultraviolet graphene ultranarrow absorption engineered by lattice Plasmon resonance[J]. *Nanotechnology*, 2021, **32**(46): 465202.
- [17] Wu X L, Zheng Y, Luo Y, et al. A four-band and polarizationindependent BDS-based tunable absorber with high refractive index sensitivity[J]. *Phys Chem Chem Phys*, 2021, 23(47): 26864–26873.
- [18] Yu M D, Huang Z P, Liu Z Q, et al. Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates[J]. Sens Actuators B Chem, 2018, 262: 845–851.
- [19] Liu G Q, Liu Y, Tang L, et al. Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures[J]. *Nanophotonics*, 2019, 8(6): 1095–1107.
- [20] Fu Q, Zhang D G, Chen Y K, et al. Surface enhanced Raman scattering arising from plasmonic interaction between silver Nano-cubes and a silver grating[J]. *Appl Phys Lett*, 2013, **103**(4): 041122.
- [21] Chu Y Z, Crozier K B. Experimental study of the interaction between localized and propagating surface plasmons[J]. Opt Lett, 2009, 34(3): 244–246.
- [22] Kohandani R, Saini S S. Self-referencing plasmonic array sensors[J]. *Plasmonics*, 2020, **15**(5): 1359–1368.
- [23] Abutoama M, Abdulhalim I. Self-referenced biosensor based on thin dielectric grating combined with thin metal film[J]. Opt Express, 2015, 23(22): 28667–28682.
- [24] Shougaijam B, Singh S S. Structural and optical analysis of Ag

作者简介

【通信作者】王向贤(1980-),男,博士,教授, 主要从事微纳光学、表面等离子体光学、 SERS方面的研究。

E-mail: wangxx869@lut.edu.cn

nanoparticle-assisted and vertically aligned TiO₂ nanowires for potential DSSCs application[J]. *J Mater Sci Mater Electron*, 2021, **32**(14): 19052–19061.

- [25] Ouhibi A, Raouafi A, Lorrain N, et al. Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen[J]. *Sens Actuators B Chem*, 2021, **330**: 129352.
- [26] Gebavi H, Ristić D, Baran N, et al. Development of silicon nanowires based on Ag-Au metal alloy seed system for sensing technologies[J]. Sens Actuators A Phys, 2021, 331: 112931.
- [27] Xu B J, Jiang M Y, Chen X N, et al. Synthesis of alloyed Au-Ag nanospheres with tunable compositions and SERS enhancement effects[J]. *Mater Sci Forum*, 2021, **1026**: 197–207.
- [28] Zhu J K, Wang X X, Qi Y P, et al. Plasmonic sensor with selfreference capability based on functional layer film composed of Au/Si gratings[J]. *Chin Phys B*, 2022, **31**(1): 014206.
- [29] Zhu W L, Xu T T, Liu W K, et al. High-performance ethanol sensor based on In₂O₃ nanospheres grown on silicon nanoporous pillar array[J]. *Sens Actuators B Chem*, 2020, **324**: 128734.
- [30] Jiao S X, Gu S F, Yang H R, et al. Research on dual-core photonic crystal fiber based on local surface Plasmon resonance sensor with silver nanowires[J]. *J Nanophotonics*, 2018, **12**(4): 046015.
- [31] Zhu L W, Cao Y Y, Chen Q Q, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. *Opto-Electron Adv*, 2021, 4(11): 210002.
- [32] Zhou F, Liu Y, Cai W P. Huge local electric field enhancement in hybrid plasmonic arrays[J]. Opt Lett, 2014, 39(5): 1302–1305.
- [33] Cao J J, Sun Y, Kong Y, et al. The sensitivity of grating-based SPR sensors with wavelength interrogation[J]. Sensors, 2019, 19(2): 405.
- [34] Zhu J K, Wang X X, Wu Y, et al. Plasmonic refractive index sensors based on one- and two-dimensional gold grating on a gold film[J]. *Photonic Sens*, 2020, **10**(4): 375–386.
- [35] Sharma A K, Pandey A K. Self-referenced plasmonic sensor with TiO₂ grating on thin Au layer: simulated performance analysis in optical communication band[J]. J Opt Soc Am B, 2019, **36**(8): F25-F31.
- [36] Arora P, Talker E, Mazurski N, et al. Dispersion engineering with plasmonic Nano structures for enhanced surface Plasmon resonance sensing[J]. Sci Rep, 2018, 9(1): 9060.

陈函文 (1998-),男,在读硕士,主要从事微纳 光学、表面等离子体光学方面的研究。

E-mail: chenhw2039@163.com

Research on surface plasmon refractive index sensing of gold nano cone array and gold film coupling structure

Wang Xiangxian^{1*}, Chen Hanwen¹, Zhu Jiankai¹, Qi Yunping², Zhang Liping¹, Yang Hua¹, Yu Jianli³

(a) Three dimensional schematic diagram of composite structure of Au nano cone and Au nano film;
(b) Reflection spectrum of composite structure under different refractive index of analyte

Overview: Plasmonics provides the possibility for the development of various novel nanophotonic devices. The researchers fabricated nanoparticles and composite structures of nanoparticles and metal films with diverse shapes, sizes, and materials. By exciting the surface plasmon resonance of the coupled structure, the electric field is immensely enhanced at the hot spot of the micro-nano structure. This characteristic has been widely used in the fields of photocatalysis, nanolithography, biosensing, and surface-enhanced Raman scattering. To further improve the sensitivity, integration, and portability of refractive index sensors, it has vast significance and potential applications to excite surface plasmons via coupling of particle arrays and thin film structures.

This paper designed a plasmonic refractive index sensor which consists of gold nano cones and a gold film with a SiO_2 film as spacer-layer. The surface plasmon resonance modes in the composite structure are studied by using the Finite Difference Time Domain method. The composite structure can stimulate not only localized surface plasmon, but also propagating surface plasmon. The energy of the incident electromagnetic wave is partially coupled to the localized surface plasmon through a single gold nano cone, and partially coupled to the propagating surface plasmon through a grating of gold nano cone array. The reflection spectra of the composite structure are simulated in the refractive index range of 1.30 to 1.40. It is found that the resonance wavelength has a linear relationship with the refractive index of the analyte, and the reflectivity at the resonance is almost zero due to the strong resonance coupling between localized and propagating surface plasmon. In addition, the full width at half maximum of propagating surface plasmon resonance mode is very narrow when the geometric parameters of gold nano cone are optimized. The sensitivity and figure of merit reach 770 nm/RIU and 113 RIU⁻¹ respectively, and it has good refractive index sensing performance. The designed composite structure is expected to be widely used in the field of biochemical detection.

Wang X X, Chen H W, Zhu J K, et al. Research on surface plasmon refractive index sensing of gold nano cone array and gold film coupling structure[J]. *Opto-Electron Eng*, 2022, **49**(12): 220135; DOI: 10.12086/oee.2022.220135

Foundation item: National Natural Science Foundation of China (61865008, 62165013), and HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology

¹College of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; ²College of Physics and Eectronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China; ³School of Electronic Engineering, Chaohu University, Hefei, Anhui 238024, China * E-mail: wangxx869@lut.edu.cn